hardswish#
- ivy.hardswish(x, /, *, complex_mode='jax', out=None)[source]#
Apply the hardswish activation function element-wise.
- Parameters:
x (
Union[Array,NativeArray]) – input arraycomplex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the hardswish activation of each element in
x.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([0., 0., 4.]) >>> y = ivy.hardswish(x) >>> y ivy.array([0., 0., 4.])
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([-3., 4., 5.]), b=ivy.array([0., 5.])) >>> x = ivy.hardswish(x, out=x) >>> x { a: ivy.array([-0., 4., 5.]), b: ivy.array([0., 5.]) }
- Array.hardswish(self, /, *, complex_mode='jax', out=None)[source]#
Apply the hardswish activation function element-wise.
- Parameters:
x – input array
complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the hardswish activation of each element in
x.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([0., 0., 4.]) >>> y = ivy.hardswish(x) >>> y ivy.array([0., 0., 4.])
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([-3., 4., 5.]), b=ivy.array([0., 5.])) >>> x = ivy.hardswish(x, out=x) >>> x { a: ivy.array([-0., 4., 5.]), b: ivy.array([0., 5.]) }
- Container.hardswish(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, complex_mode='jax', out=None)[source]#
ivy.Container instance method variant of ivy.hardswish. This method simply wraps the function, and so the docstring for ivy.hardswish also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container with the hardswish activation function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([-3., 4., 5.]), b=ivy.array([0., 5.])) >>> x = ivy.hardswish(x, out=x) >>> x { a: ivy.array([-0., 4., 5.]), b: ivy.array([0., 5.]) }