make_svd_non_negative#
- ivy.make_svd_non_negative(x, U, S, V, /, *, nntype='nndsvd')[source]#
Use NNDSVD method to transform SVD results into a non-negative form. This method leads to more efficient solving with NNMF [1].
- Parameters:
x (
Union[Array,NativeArray]) – tensor being decomposed.U (
Union[Array,NativeArray]) – left singular matrix from SVD.S (
Union[Array,NativeArray]) – diagonal matrix from SVD.V (
Union[Array,NativeArray]) – right singular matrix from SVD.nntype (
Optional[Literal['nndsvd','nndsvda']], default:'nndsvd') –- whether to fill small values with 0.0 (nndsvd),
or the tensor mean (nndsvda, default).
[1] (Boutsidis & Gallopoulos. Pattern Recognition, 41(4): 1350-1362, 2008.) –
- Return type:
- Array.make_svd_non_negative(self, U, S, V, /, *, nntype='nndsvd')[source]#
ivy.Array instance method variant of ivy.make_svd_non_negative. This method simply wraps the function, and so the docstring for ivy.make_svd_non_negative also applies to this method with minimal changes.
- Parameters:
self (
Union[Array,NativeArray]) – tensor being decomposed.U (
Union[Array,NativeArray]) – left singular matrix from SVD.S (
Union[Array,NativeArray]) – diagonal matrix from SVD.V (
Union[Array,NativeArray]) – right singular matrix from SVD.nntype (
Optional[Literal['nndsvd','nndsvda']], default:'nndsvd') – whether to fill small values with 0.0 (nndsvd), or the tensor mean (nndsvda, default).[1] (Boutsidis & Gallopoulos. Pattern Recognition, 41(4): 1350-1362, 2008.) –
- Return type:
Tuple[Array,Array]
- Container.make_svd_non_negative(self, U, S, V, /, *, nntype='nndsvd', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.make_svd_non_negative. This method simply wraps the function, and so the docstring for ivy.make_svd_non_negative applies to this method with minimal changes.
- Parameters:
self (
Union[Array,NativeArray,Container]) – tensor being decomposed.U (
Union[Array,NativeArray,Container]) – left singular matrix from SVD.S (
Union[Array,NativeArray,Container]) – diagonal matrix from SVD.V (
Union[Array,NativeArray,Container]) – right singular matrix from SVD.nntype (
Optional[Union[Literal['nndsvd','nndsvda'],Container]], default:'nndsvd') – whether to fill small values with 0.0 (nndsvd), or the tensor mean (nndsvda, default).[1] (Boutsidis & Gallopoulos. Pattern Recognition, 41(4): 1350-1362, 2008.) –
- Return type:
Tuple[Container,Container]