exp#
- ivy.exp(x, /, *, out=None)[source]#
Calculate an implementation-dependent approximation to the exponential function, having domain
[-infinity, +infinity]and codomain[+0, +infinity], for each elementx_iof the input arrayx(eraised to the power ofx_i, whereeis the base of the natural logarithm).Note
For complex floating-point operands,
exp(conj(x))must equalconj(exp(x)).Note
The exponential function is an entire function in the complex plane and has no branch cuts.
Special cases
For floating-point operands,
If
x_iisNaN, the result isNaN.If
x_iis+0, the result is1.If
x_iis-0, the result is1.If
x_iis+infinity, the result is+infinity.If
x_iis-infinity, the result is+0.
For complex floating-point operands, let
a = real(x_i),b = imag(x_i), andIf
ais either+0or-0andbis+0, the result is1 + 0j.If
ais a finite number andbis+infinity, the result isNaN + NaN j.If
ais a finite number andbisNaN, the result isNaN + NaN j.If
ais+infinityandbis+0, the result isinfinity + 0j.If
ais-infinityandbis a finite number, the result is+0 * cis(b).If
ais+infinityandbis a nonzero finite number, the result is+infinity * cis(b).If
ais-infinityandbis+infinity, the result is0 + 0j(signs of real and imaginary components are unspecified).If
ais+infinityandbis+infinity, the result isinfinity + NaN j(sign of real component is unspecified).If
ais-infinityandbisNaN, the result is0 + 0j(signs of real and imaginary components are unspecified).If
ais+infinityandbisNaN, the result isinfinity + NaN j(sign of real component is unspecified).If
aisNaNandbis+0, the result isNaN + 0j.If
aisNaNandbis not equal to0, the result isNaN + NaN j.If
aisNaNandbisNaN, the result isNaN + NaN j.
where
cis(v)iscos(v) + sin(v)*1j.- Parameters:
- Return type:
- Returns:
ret – an array containing the evaluated exponential function result for each element in
x. The returned array must have a floating-point data type determined by type-promotion.This method conforms to the
This docstring is an extension of the
`docstring <https (//data-apis.org/array-api/latest/)
API_specification/generated/array_api.exp.html>`_
in the standard.
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Containerinstances in place of any of the arguments.
Examples
With :class:Number:
>>> x = 3. >>> y = ivy.exp(x) >>> print(y) ivy.array(20.08553692)
With
ivy.Arrayinput:>>> x = ivy.array([1., 2., 3.]) >>> y = ivy.exp(x) >>> print(y) ivy.array([ 2.71828175, 7.38905621, 20.08553696])
With nested inputs in
ivy.Array:>>> x = ivy.array([[-5.67], [ivy.nan], [0.567]]) >>> y = ivy.exp(x) >>> print(y) ivy.array([[0.00344786], [ nan], [1.76297021]])
With
ivy.NativeArrayinput:>>> x = ivy.native_array([0., 4., 2.]) >>> y = ivy.exp(x) >>> print(y) ivy.array([ 1. , 54.59814835, 7.38905621])
With
ivy.Containerinput:>>> x = ivy.Container(a=3.1, b=ivy.array([3.2, 1.])) >>> y = ivy.exp(x) >>> print(y) { a: ivy.array(22.197948), b: ivy.array([24.53253174, 2.71828175]) }
- Array.exp(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.exp. This method simply wraps the function, and so the docstring for ivy.exp also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array. Should have a floating-point data type.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the evaluated exponential function result for each element in
self. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1., 2., 3.]) >>> print(x.exp()) ivy.array([ 2.71828198, 7.38905573, 20.08553696])
- Container.exp(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.exp. This method simply wraps the function, and so the docstring for ivy.exp also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container. Should have a floating-point data type.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container containing the evaluated result for each element in
self. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
>>> x = ivy.Container(a=ivy.array([1., 2., 3.]), b=ivy.array([4., 5., 6.])) >>> y = x.exp() >>> print(y) { a: ivy.array([2.71828198, 7.38905573, 20.08553696]), b: ivy.array([54.59814835, 148.4131622, 403.428772]) }