unique_counts#
- ivy.unique_counts(x, /)[source]#
Return the unique elements of an input array
xand the corresponding counts for each unique element inx.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nanvalues compare asFalse,nanvalues should be considered distinct.As
-0and+0compare asTrue, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0if-0occurs before+0).
- Parameters:
x (
Union[Array,NativeArray]) – input array. Ifxhas more than one dimension, the function must flattenxand return the unique elements of the flattened array.- Return type:
- Returns:
ret – a namedtuple
(values, counts)whosefirst element must have the field name
valuesand must be an array containing the unique elements ofx. The array must have the same data type asx.second element must have the field name
countsand must be an array containing the number of times each unique element occurs inx. The returned array must have same shape asvaluesand must have the default array index data type.
.. note:: – The order of unique elements is not specified and may vary between implementations.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Containerinstances in place of any of the arguments.Examples
With
ivy.Arrayinput:>>> x = ivy.array([1,2,1,3,4,1,3]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([1, 2, 3, 4]), counts=ivy.array([3, 1, 2, 1]))
>>> x = ivy.asarray([[1,2,3,4],[2,3,4,5],[3,4,5,6]]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([1, 2, 3, 4, 5, 6]), counts=ivy.array([1, 2, 3, 3, 2, 1]))
>>> x = ivy.array([0.2,0.3,0.4,0.2,1.4,2.3,0.2]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([0.2 , 0.30000001, 0.40000001, 1.39999998, 2.29999995]), counts=ivy.array([3, 1, 1, 1, 1]))
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([0., 1., 3. , 2. , 1. , 0.]), ... b=ivy.array([1, 2, 1, 3, 4, 1, 3])) >>> y = ivy.unique_counts(x) >>> print(y) { a: (list[2],<classivy.array.array.Array>shape=[4]), b: (list[2],<classivy.array.array.Array>shape=[4]) }
- Array.unique_counts(self)[source]#
ivy.Array instance method variant of ivy.unique_counts. This method simply wraps the function, and so the docstring for ivy.unique_counts also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array. Ifxhas more than one dimension, the function must flattenxand return the unique elements of the flattened array.- Return type:
Tuple[Array,Array]- Returns:
ret – a namedtuple
(values, counts)whosefirst element must have the field name
valuesand must be an
array containing the unique elements of
x. The array must have the same data type asx. - second element must have the field namecountsand must be an array containing the number of times each unique element occurs inx. The returned array must have same shape asvaluesand must have the default array index data type.
Examples
>>> x = ivy.array([0., 1., 2. , 1. , 0.]) >>> y = x.unique_counts() >>> print(y) Results(values=ivy.array([0.,1.,2.]),counts=ivy.array([2,2,1]))
- Container.unique_counts(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.unique_counts. This method simply wraps the function, and so the docstring for ivy.unique_counts also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container. Ifxhas more than one dimension, the function must flattenxand return the unique elements of the flattened array.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.
- Return type:
Container- Returns:
ret – a namedtuple
(values, counts)whosefirst element must have the field name
valuesand must be an
array containing the unique elements of
x. The array must have the same data type asx. - second element must have the field namecountsand must be an array containing the number of times each unique element occurs inx. The returned array must have same shape asvaluesand must have the default array index data type.
Examples
With
ivy.Containerinstance method:>>> x = ivy.Container(a=ivy.array([0., 1., 3. , 2. , 1. , 0.]), ... b=ivy.array([1,2,1,3,4,1,3])) >>> y = x.unique_counts() >>> print(y) [{ a: ivy.array([0., 1., 2., 3.]), b: ivy.array([1, 2, 3, 4]) }, { a: ivy.array([2, 2, 1, 1]), b: ivy.array([3, 1, 2, 1]) }]