conv_general_transpose#
- ivy.conv_general_transpose(x, filters, strides, padding, /, *, dims=2, output_shape=None, filter_format='channel_last', data_format='channel_last', dilations=1, feature_group_count=1, bias=None, out=None)[source]#
Compute a 1-D, 2-D, and 3-D transpose convolution given 3-D, 4-D and 5-D input x respectively and filters arrays.
- Parameters:
x (
Union[Array,NativeArray]) – Input image [batch_size,d,h,w,d_in] or [batch_size,d_in,d,h,w].filters (
Union[Array,NativeArray]) – Convolution filters [fd,fh,fw,d_out,d_in].strides (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int]]) – The stride of the sliding window for each dimension of input.padding (
str) – Either ‘SAME’ (padding so that the output’s shape is the same as the input’s), or ‘VALID’ (padding so that the output’s shape is output_shape).dims (
int, default:2) – Either 1, 2, or 3 corresponding to 1-D, 2-D, and 3-D convolution.output_shape (
Optional[Union[Shape,NativeShape]], default:None) – Shape of the output.filter_format (
str, default:'channel_last') – Either “channel_first” or “channel_last”. “channel_first” corresponds to “IODHW”,input data formats, while “channel_last” corresponds to “DHWOI”.data_format (
str, default:'channel_last') – Either “channel_first” or “channel_last”. “channel_first” corresponds to “NCW”, “NCHW”, “NCDHW” input data formatS for 1-D, 2-D, 3-D convolution respectively, while “channel_last” corresponds to “NWC”, “NHWC”, “NDHWC” respectively.dilations (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int]], default:1) – The dilation factor for each dimension of input. (Default value = 1)feature_group_count (
int, default:1) – split input into groups, d_in should be divisible by the number of groups.bias (
Optional[Union[Array,NativeArray]], default:None) – Bias array of shape [d_out].out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The result of the transpose convolution operation.
Examples
With
ivy.Arrayinput: >>> x = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3]) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], ‘SAME’) >>> print(y.shape) ivy.Shape(1, 6, 56, 56, 6) >>> x = ivy.random_normal(mean=0, std=1, shape=[1, 3, 64, 64, 3]) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], ‘VALID’, dilations=[1, 1, 1]) >>> print(y.shape) ivy.Shape(1, 7, 129, 129, 6) With :class: ‘ivy.Container’ inputs: >>> a = ivy.random_normal(mean=0, std=1, shape=[1, 3, 14, 14, 3]) >>> b = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3]) >>> c = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3, 3]) >>> d = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3, 3]) >>> x = ivy.Container(a=a, b=b) >>> filters = ivy.Container(c=c, d=d) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], ‘SAME’) >>> print(y.shape) {- a: {
c: ivy.Shape(1, 6, 28, 28, 3), d: ivy.Shape(1, 6, 28, 28, 3)
}, b: {
c: ivy.Shape(1, 6, 56, 56, 3), d: ivy.Shape(1, 6, 56, 56, 3)
}, c: {
c: ivy.Shape(6, 6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 6, 3)
}, d: {
c: ivy.Shape(6, 6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 6, 3)
}
} With a mix of
ivy.Arrayandivy.Containerinputs: >>> x = ivy.full((1, 6, 6, 6, 1), 2.7) >>> a = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1]) >>> b = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1]) >>> filters = ivy.Container(a=a, b=b) >>> y = ivy.conv3d_transpose(x, filters, [1, 1, 1], ‘VALID’, dilations=[1, 1, 1]) >>> print(y.shape) {a: ivy.Shape(1, 8, 8, 8, 1), b: ivy.Shape(1, 8, 8, 8, 1)
} >>> x = ivy.full((1, 6, 6, 6, 1), 1.23) >>> a = ivy.array(ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1])) >>> b = ivy.array(ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1])) >>> filters = ivy.Container(a=a, b=b) >>> y = ivy.conv3d_transpose(x, filters, [1, 1, 1], ‘VALID’, dilations=[1, 1, 1]) >>> print(y.shape) {
a: ivy.Shape(1, 8, 8, 8, 1), b: ivy.Shape(1, 8, 8, 8, 1)
}