to_numpy#
- ivy.to_numpy(x, /, *, copy=True)[source]#
Convert an array into a numpy array.
- Parameters:
x (
Union[Array,NativeArray]) – input arraycopy (
bool, default:True) – whether to copy the array to a new address or not. Default isTrue.
- Return type:
ndarray- Returns:
ret – a numpy array copying all the element of the array
x.
Examples
With
ivy.Arrayinputs:>>> x = ivy.array([-1, 0, 1]) >>> y = ivy.to_numpy(x, copy=True) >>> print(y) [-1 0 1]
>>> x = ivy.array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]]) >>> y = ivy.to_numpy(x, copy=True) >>> print(y) [[-1 0 1] [-1 0 1] [ 1 0 -1]]
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([-1, 0, 1])) >>> y = ivy.to_numpy(x) >>> print(y) { a: array([-1, 0, 1], dtype=int32) }
>>> x = ivy.Container(a=ivy.array([[-1.0, 0., 1.], [-1, 0, 1], [1, 0, -1]]), ... b=ivy.array([[-1, 0, 0], [1, 0, 1], [1, 1, 1]])) >>> y = ivy.to_numpy(x) >>> print(y) { a: array([[-1., 0., 1.], [-1., 0., 1.], [1., 0., -1.]], dtype=float32), b: array([[-1, 0, 0], [1, 0, 1], [1, 1, 1]], dtype=int32) }
- Array.to_numpy(self, /, *, copy=True)[source]#
ivy.Array instance method variant of ivy.to_numpy. This method simply wraps the function, and so the docstring for ivy.to_numpy also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array.copy (
bool, default:True) – whether to copy the array to a new address or not. Default isTrue.
- Return type:
ndarray- Returns:
ret – a numpy array copying all the element of the array
self.
Examples
With
ivy.Arrayinputs:>>> x = ivy.array([-1, 0, 1]) >>> y = x.to_numpy() >>> print(y) [-1 0 1]
>>> x = ivy.array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]]) >>> y = x.to_numpy() >>> print(y) [[-1 0 1] [-1 0 1] [ 1 0 -1]]
- Container.to_numpy(self, /, *, copy=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.to_numpy. This method simply wraps the function, and so the docstring for ivy.to_numpy also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container.copy (
Union[bool,Container], default:True) – Whether to copy the input. Default isTrue.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.
- Return type:
Container- Returns:
ret – a container of numpy arrays copying all the element of the container
self.
Examples
With one
ivy.Containerinstances:>>> x = ivy.Container(a=ivy.array([-1, 0, 1]), b=ivy.array([1, 0, 1, 1])) >>> y = x.to_numpy() >>> print(y) { a: array([-1, 0, 1], dtype=int32), b: array([1, 0, 1, 1], dtype=int32) }
>>> x = ivy.Container(a=ivy.native_array([[-1, 0, 1], [-1, 0, 1], [1, 0, -1]]), ... b=ivy.native_array([[-1, 0, 0], [1, 0, 1], [1, 1, 1]])) >>> y = x.to_numpy() >>> print(y) { a: array([[-1, 0, 1], [-1, 0, 1], [1, 0, -1]], dtype=int32), b: array([[-1, 0, 0], [1, 0, 1], [1, 1, 1]], dtype=int32) }