log_poisson_loss#
- ivy.log_poisson_loss(true, pred, /, *, compute_full_loss=False, axis=-1, reduction='none', out=None)[source]#
Compute the log-likelihood loss between the prediction and the target under the assumption that the target has a Poisson distribution. Caveat: By default, this is not the exact loss, but the loss minus a constant term [log(z!)]. That has no effect for optimization, but does not play well with relative loss comparisons. To compute an approximation of the log factorial term, specify
compute_full_loss=Trueto enable Stirling’s Approximation.- Parameters:
true (
Union[Array,NativeArray]) – input array containing true labels.pred (
Union[Array,NativeArray]) – input array containing Predicted labels.compute_full_loss (
bool, default:False) – whether to compute the full loss. If false, a constant term is dropped in favor of more efficient optimization. Default:False.axis (
int, default:-1) – the axis along which to compute the log-likelihood loss. If axis is-1, the log-likelihood loss will be computed along the last dimension. Default:-1.reduction (
str, default:'none') –'none': No reduction will be applied to the output.'mean': The output will be averaged.'sum': The output will be summed. Default:'none'.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The binary log-likelihood loss between the given distributions.
Examples
>>> x = ivy.array([0, 0, 1, 0]) >>> y = ivy.array([0.25, 0.25, 0.25, 0.25]) >>> print(ivy.log_poisson_loss(x, y)) ivy.array([1.28402555, 1.28402555, 1.03402555, 1.28402555])
>>> z = ivy.array([0.1, 0.1, 0.7, 0.1]) >>> print(ivy.log_poisson_loss(x, z, reduction='mean')) ivy.array(1.1573164)
- Array.log_poisson_loss(self, target, /, *, compute_full_loss=False, axis=-1, reduction='none', out=None)[source]#
ivy.Array instance method variant of ivy.log_poisson_loss. This method simply wraps the function, and so the docstring for ivy.l1_loss also applies to this method with minimal changes.
- Parameters:
self (
Union[Array,NativeArray]) – input array containing true labels.target (
Union[Array,NativeArray]) – input array containing targeted labels.compute_full_loss (
bool, default:False) – whether to compute the full loss. If false, a constant term is dropped in favor of more efficient optimization. Default:False.axis (
int, default:-1) – the axis along which to compute the log-likelihood loss. If axis is-1, the log-likelihood loss will be computed along the last dimension. Default:-1.reduction (
str, default:'none') –'none': No reduction will be applied to the output.'mean': The output will be averaged.'sum': The output will be summed. Default:'none'.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – The binary log-likelihood loss between the given distributions.
Examples
>>> x = ivy.array([0, 0, 1, 0]) >>> y = ivy.array([0.25, 0.25, 0.25, 0.25]) >>> loss = x.log_poisson_loss(y) >>> print(loss) ivy.array([1.28402555, 1.28402555, 1.03402555, 1.28402555])
>>> z = ivy.array([0.1, 0.1, 0.7, 0.1]) >>> loss = x.log_poisson_loss(z, reduction='mean') >>> print(loss) ivy.array(1.1573164)
- Container.log_poisson_loss(self, target, /, *, compute_full_loss=False, axis=-1, reduction='mean', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.log_poisson_loss. This method simply wraps the function, and so the docstring for ivy.log_poisson_loss also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container.target (
Union[Container,Array,NativeArray]) – input array or container containing the targeticted values.compute_full_loss (
bool, default:False) – whether to compute the full loss. If false, a constant term is dropped in favor of more efficient optimization. Default:False.axis (
int, default:-1) – the axis along which to compute the log-likelihood loss. If axis is-1, the log-likelihood loss will be computed along the last dimension. Default:-1.reduction (
Optional[Union[str,Container]], default:'mean') –'mean': The output will be averaged.'sum': The output will be summed.'none': No reduction will be applied to the output. Default:'none'.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If input, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isinput.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – The L1 loss between the input array and the targeticted values.
Examples
>>> x = ivy.Container(a=ivy.array([1, 2, 3]), b=ivy.array([4, 5, 6])) >>> y = ivy.Container(a=ivy.array([2, 2, 2]), b=ivy.array([5, 5, 5])) >>> z = x.log_poisson_loss(y) >>> print(z) { a: ivy.array(3.3890561), b: ivy.array(123.413159) }