clip_vector_norm#
- ivy.clip_vector_norm(x, max_norm, /, *, p=2.0, out=None)[source]#
Clips (limits) the vector p-norm of an array.
- Parameters:
x (
Union[Array,NativeArray]) – Input array containing elements to clip.max_norm (
float) – The maximum value of the array norm.p (
float, default:2.0) – The p-value for computing the p-norm. Default is 2.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – An array with the vector norm downscaled to the max norm if needed.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([0., 1., 2.]) >>> y = ivy.clip_vector_norm(x, 2.0) >>> print(y) ivy.array([0. , 0.89442718, 1.78885436])
>>> x = ivy.array([0.5, -0.7, 2.4]) >>> y = ivy.clip_vector_norm(x, 3.0, p=1.0) >>> print(y) ivy.array([ 0.41666666, -0.58333331, 2. ])
>>> x = ivy.array([[[0., 0.], [1., 3.], [2., 6.]], ... [[3., 9.], [4., 12.], [5., 15.]]]) >>> y = ivy.zeros(((2, 3, 2))) >>> ivy.clip_vector_norm(x, 4.0, p=1.0, out=y) >>> print(y) ivy.array([[[0. , 0. ], [0.06666667, 0.20000002], [0.13333334, 0.40000004]],
- [[0.20000002, 0.60000002],
[0.26666668, 0.80000007], [0.33333334, 1. ]]]))
>>> x = ivy.array([[1.1, 2.2, 3.3], ... [-4.4, -5.5, -6.6]]) >>> ivy.clip_vector_norm(x, 1.0, p=3.0, out=x) >>> print(x) ivy.array([[ 0.13137734, 0.26275468, 0.39413199], [-0.52550936, -0.6568867 , -0.78826398]])
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([0., 1., 2.]), ... b=ivy.array([3., 4., 5.])) >>> y = ivy.clip_vector_norm(x, 2.0) >>> print(y) { a: ivy.array([0., 0.89442718, 1.78885436]), b: ivy.array([0.84852815, 1.1313709, 1.41421366]) }
With multiple
ivy.Containerinputs:>>> x = ivy.Container(a=ivy.array([0., 1., 2.]), ... b=ivy.array([3., 4., 5.])) >>> max_norm = ivy.Container(a=2, b=3) >>> y = ivy.clip_vector_norm(x, max_norm) >>> print(y) { a: ivy.array([0., 0.89442718, 1.78885436]), b: ivy.array([1.27279221, 1.69705628, 2.12132034]) }
- Array.clip_vector_norm(self, max_norm, /, *, p=2.0, out=None)[source]#
ivy.Array instance method variant of ivy.clip_vector_norm. This method simply wraps the function, and so the docstring for ivy.clip_vector_norm also applies to this method with minimal changes.
- Parameters:
self (
Array) – input arraymax_norm (
float) – float, the maximum value of the array norm.p (
float, default:2.0) – optional float, the p-value for computing the p-norm. Default is 2.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – An array with the vector norm downscaled to the max norm if needed.
Examples
With
ivy.Arrayinstance method:>>> x = ivy.array([0., 1., 2.]) >>> y = x.clip_vector_norm(2.0) >>> print(y) ivy.array([0., 0.894, 1.79])
- Container.clip_vector_norm(self, max_norm, /, *, p=2.0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.clip_vector_norm. This method simply wraps the function, and so the docstring for ivy.clip_vector_norm also applies to this method with minimal changes.
- Parameters:
self (
Container) – input arraymax_norm (
Union[float,Container]) – float, the maximum value of the array norm.p (
Union[float,Container], default:2.0) – optional float, the p-value for computing the p-norm. Default is 2.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – An array with the vector norm downscaled to the max norm if needed.
Examples
With
ivy.Containerinstance method:>>> x = ivy.Container(a=ivy.array([0., 1., 2.]), ... b=ivy.array([3., 4., 5.])) >>> y = x.clip_vector_norm(2.0, p=1.0) >>> print(y) { a: ivy.array([0., 0.667, 1.33]), b: ivy.array([0.5, 0.667, 0.833]) }