relu6#
- ivy.relu6(x, /, *, complex_mode='jax', out=None)[source]#
Apply the rectified linear unit 6 function element-wise.
- Parameters:
x (
Union[Array,NativeArray]) – input arraycomplex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the rectified linear unit 6 activation of each element in
x.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.relu6(x) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.])
>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> ivy.relu6(x, out = y) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.])
- Array.relu6(self, /, *, complex_mode='jax', out=None)[source]#
Apply the rectified linear unit 6 function element-wise.
- Parameters:
self – input array
complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the rectified linear unit 6 activation of each element in input.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.relu6(x) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.])
>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> ivy.relu6(x, out = y) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.])
- Container.relu6(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, complex_mode='jax', out=None)[source]#
ivy.Container instance method variant of ivy.relu6. This method simply wraps the function, and so the docstring for ivy.relu6 also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container with the rectified linear 6 activation unit function applied element-wise.
Examples
>>> x = ivy.Container(a = ivy.array([-3., -2., -1., 0., 1., 2., 3., 4., 5.]), ... b= ivy.array([1., 2., 3., 4., 5., 6., 7., 8., 9.])) >>> y = x.relu() >>> print(y) { a: ivy.array([0., 0., 0., 0., 1., 2., 3., 4., 5.]), b: ivy.array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) }