group_norm#
- ivy.group_norm(x, num_groups=1, /, *, offset=None, scale=None, eps=1e-05, data_format='NSC', out=None)[source]#
Apply group normalization to the input array and returns the normalized input.
- Parameters:
x (
Union[NativeArray,Array]) –Input array of default shape (N, *S, C), where N is the batch dimension, *S corresponds to any number of spatial dimensions and
C corresponds to the channel dimension.
num_groups (
int, default:1) – number of groups to separate the channels intooffset (
Optional[Union[Array,NativeArray]], default:None) – An offset array of size C. If present, will be added to the normalized input.scale (
Optional[Union[Array,NativeArray]], default:None) – A scale array of size C. If present, the scale is applied to the normalized input.eps (
Optional[float], default:1e-05) – A small float number to avoid dividing by 0.data_format (
Optional[str], default:'NSC') – The ordering of the dimensions in the input, one of “NSC” or “NCS”, where N is the batch dimension, S represents any number of spatial dimensions and C is the channel dimension. Default is “NSC”.out (
Optional[Array], default:None) – optional output arrays, for writing the result to.
- Return type:
- Returns:
ret – The normalized array.
- Array.group_norm(self, num_groups=1, /, *, offset=None, scale=None, eps=1e-05, data_format='NSC', out=None)[source]#
ivy.Array instance method variant of ivy.group_norm. This method simply wraps the function, and so the docstring for ivy.group_norm also applies to this method with minimal changes.
- Parameters:
x – Input array of default shape (N, *S, C), where N is the batch dimension, *S corresponds to any number of spatial dimensions and C corresponds to the channel dimension.
num_groups (
int, default:1) – number of groups to separate the channels intooffset (
Optional[Union[Array,NativeArray]], default:None) – An offset array of size C. If present, will be added to the normalized input.scale (
Optional[Union[Array,NativeArray]], default:None) – A scale array of size C. If present, the scale is applied to the normalized input.eps (
Optional[float], default:1e-05) – A small float number to avoid dividing by 0.data_format (
Optional[str], default:'NSC') – The ordering of the dimensions in the input, one of “NSC” or “NCS”, where N is the batch dimension, S represents any number of spatial dimensions and C is the channel dimension. Default is “NSC”.out (
Optional[Array], default:None) – optional output arrays, for writing the result to.
- Return type:
Array- Returns:
ret – The normalized array.
- Container.group_norm(self, num_groups=1, /, *, offset=None, scale=None, eps=1e-05, data_format='NSC', out=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container static method variant of ivy.group_norm. This method simply wraps the function, and so the docstring for ivy.group_norm also applies to this method with minimal changes.
- Parameters:
self (
Union[Array,NativeArray,Container]) – Input array of default shape (N, *S, C), where N is the batch dimension, *S corresponds to any number of spatial dimensions and C corresponds to the channel dimension.num_groups (
Union[int,Container], default:1) – number of groups to separate the channels intooffset (
Optional[Union[Array,NativeArray,Container]], default:None) – An offset array of size C. If present, will be added to the normalized input.scale (
Optional[Union[Array,NativeArray,Container]], default:None) – A scale array of size C. If present, the scale is applied to the normalized input.eps (
Union[float,Container], default:1e-05) – A small float number to avoid dividing by 0.data_format (
Union[str,Container], default:'NSC') – The ordering of the dimensions in the input, one of “NSC” or “NCS”, where N is the batch dimension, S represents any number of spatial dimensions and C is the channel dimension. Default is “NSC”.out (
Optional[Union[Array,Container]], default:None) – optional output arrays, for writing the result to.
- Return type:
Container- Returns:
ret – The normalized array.