sigmoid#
- ivy.sigmoid(x, /, *, complex_mode='jax', out=None)[source]#
Apply the sigmoid function element-wise.
- Parameters:
x (
Union[Array,NativeArray]) – input array.complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the input broadcast to. default: None
- Return type:
- Returns:
ret – an array containing the sigmoid activation of each element in
x. sigmoid activation of x is defined as 1/(1+exp(-x)).
Examples
With
ivy.Arrayinput:>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.sigmoid(x) >>> print(y) ivy.array([0.2689414 , 0.7310586 , 0.88079703])
>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.zeros(3) >>> ivy.sigmoid(x, out=y) >>> print(y) ivy.array([0.2689414 , 0.7310586 , 0.88079703])
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([1.]), ... d=ivy.array([2.]))) >>> y = ivy.sigmoid(x) >>> print(y) { a: ivy.array([0.5]), b: { c: ivy.array([0.7310586]), d: ivy.array([0.88079703]) } }
>>> x = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([1.]), ... d=ivy.array([2.]))) >>> y = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([0.]), ... d=ivy.array([0.]))) >>> ivy.sigmoid(x, out=y) >>> print(y) { a: ivy.array([0.5]), b: { c: ivy.array([0.7310586]), d: ivy.array([0.88079703]) } }
- Array.sigmoid(self, /, *, complex_mode='jax', out=None)[source]#
ivy.Array instance method variant of ivy.sigmoid.
This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes.
- Parameters:
self (
Array) – Input arraycomplex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Array], default:None) – optional output array for writing the result to. It must have the same shape the input broadcast to default: None
- Return type:
Array- Returns:
ret – an array with the sigmoid activation function applied element-wise.
Examples
>>> x = ivy.array([-1., 1., 2.]) >>> y = x.sigmoid() >>> print(y) ivy.array([0.269, 0.731, 0.881])
- Container.sigmoid(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, complex_mode='jax', out=None)[source]#
ivy.Container instance method variant of ivy.sigmoid. This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.complex_mode (
Literal['split','magnitude','jax'], default:'jax') – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_inputfor more detail.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container with the sigmoid unit function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([-1., 1., 2.]), b=ivy.array([0.5, 0., -0.1])) >>> y = x.sigmoid() >>> print(y) { a: ivy.array([0.2689414, 0.7310586, 0.88079703]), b: ivy.array([0.62245935, 0.5, 0.4750208]) }