log2#
- ivy.log2(x, /, *, out=None)[source]#
Calculate an implementation-dependent approximation to the base
2logarithm, having domain[0, +infinity]and codomain[-infinity, +infinity], for each elementx_iof the input arrayx.Special cases
For floating-point operands,
If
x_iisNaN, the result isNaN.If
x_iis less than0, the result isNaN.If
x_iis either+0or-0, the result is-infinity.If
x_iis1, the result is+0.If
x_iis+infinity, the result is+infinity.
For complex floating-point operands, special cases must be handled as if the operation is implemented using the standard change of base formula
\[\log_{2} x = \frac{\log_{e} x}{\log_{e} 2}\]where \(\log_{e}\) is the natural logarithm.
- Parameters:
- Return type:
- Returns:
ret – an array containing the evaluated base
2logarithm for each element inx. The returned array must have a floating-point data type determined by type-promotion.
This method conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Containerinstances in place of any of the arguments.Examples
With
ivy.Arrayinput: >>> x = ivy.array([5.0, 1, -0.0, -6.0]) >>> y = ivy.log2(x) >>> print(y) ivy.array([2.32, 0., -inf, nan]) >>> x = ivy.array([[float(‘nan’), 1, 6.0, float(‘+inf’)], … [+0, -2.0, -7, float(‘-inf’)]]) >>> y = ivy.empty_like(x) >>> ivy.log2(x, out=y) >>> print(y) ivy.array([[nan, 0., 2.58, inf],[-inf, nan, nan, nan]]) >>> x = ivy.array([[float(‘nan’), 1, 7.0, float(‘+inf’)], … [+0, -3.0, -8, float(‘-inf’)]]) >>> ivy.log2(x, out=x) >>> print(x) ivy.array([[nan, 0., 2.81, inf],[-inf, nan, nan, nan]])With
ivy.Containerinput: >>> x = ivy.Container(a=ivy.array([0.0, float(‘nan’)]), … b=ivy.array([-0., -4.9, float(‘+inf’)]), … c=ivy.array([8.9, 2.1, 1.])) >>> y = ivy.log2(x) >>> print(y) {a: ivy.array([-inf, nan]), b: ivy.array([-inf, nan, inf]), c: ivy.array([3.15, 1.07, 0.])
}
- Array.log2(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.log2. This method simply wraps the function, and so the docstring for ivy.log2 also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array. Should have a real-valued floating-point data type.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the evaluated base
2logarithm for each element inself. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Arrayinstance method:>>> x = ivy.array([5.0, 1, -0.0, -6.0]) >>> y = ivy.log2(x) >>> print(y) ivy.array([2.32, 0., -inf, nan])
>>> x = ivy.array([float('nan'), -5.0, -0.0, 1.0, 5.0, float('+inf')]) >>> y = x.log2() >>> print(y) ivy.array([nan, nan, -inf, 0., 2.32, inf])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], [+0, -2.0, -5, float('-inf')]]) >>> y = x.log2() >>> print(y) ivy.array([[nan, 0., 2.32, inf], [-inf, nan, nan, nan]])
- Container.log2(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.log2. This method simply wraps the function, and so the docstring for ivy.log2 also applies to this metho with minimal changes.
- Parameters:
self (
Container) – input container. Should have a real-valued floating-point data type.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container containing the evaluated base
2logarithm for each element inself. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Containerinstance method:>>> x = ivy.Container(a=ivy.array([0.0, float('nan')]), ... b=ivy.array([-0., -5.9, float('+inf')]), ... c=ivy.array([8.9, 2.1, 1.])) >>> y = ivy.log2(x) >>> print(y) { a: ivy.array([-inf, nan]), b: ivy.array([-inf, nan, inf]), c: ivy.array([3.15, 1.07, 0.]) }