not_equal#
- ivy.not_equal(x1, x2, /, *, out=None)[source]#
Compute the truth value of
x1_i != x2_ifor each elementx1_iof the input arrayx1with the respective elementx2_iof the input arrayx2.Special Cases
For real-valued floating-point operands,
If
x1_iisNaNorx2_iisNaN, the result isTrue.If
x1_iis+infinityandx2_iis-infinity, the result isTrue.If
x1_iis-infinityandx2_iis+infinity, the result isTrue.If
x1_iis a finite number,x2_iis a finite number, andx1_idoes not equalx2_i, the result isTrue.In the remaining cases, the result is
False.
For complex floating-point operands, let
a = real(x1_i),b = imag(x1_i),c = real(x2_i),d = imag(x2_i), andIf
a,b,c, ordisNaN, the result isTrue.In the remaining cases, the result is the logical OR of the equality comparison between the real values
aandc(real components) and between the real valuesbandd(imaginary components), as described above for real-valued floating-point operands (i.e.,a != c OR b != d).
- Parameters:
x1 (
Union[float,Array,NativeArray,Container]) – first input array. Should have a numeric data type.x2 (
Union[float,Array,NativeArray,Container]) – second input array. Must be compatible withx1(see ref:broadcasting). Should have a numeric data type.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Containerinstances in place of any of the arguments.Examples
With
ivy.Arrayinputs:>>> x1 = ivy.array([1, 0, 1, 1]) >>> x2 = ivy.array([1, 0, 0, -1]) >>> y = ivy.not_equal(x1, x2) >>> print(y) ivy.array([False, False, True, True])
>>> x1 = ivy.array([1, 0, 1, 0]) >>> x2 = ivy.array([0, 1, 0, 1]) >>> y = ivy.not_equal(x1, x2) >>> print(y) ivy.array([True, True, True, True])
>>> x1 = ivy.array([1, -1, 1, -1]) >>> x2 = ivy.array([0, -1, 1, 0]) >>> y = ivy.zeros(4) >>> ivy.not_equal(x1, x2, out=y) >>> print(y) ivy.array([1., 0., 0., 1.])
>>> x1 = ivy.array([1, -1, 1, -1]) >>> x2 = ivy.array([0, -1, 1, 0]) >>> y = ivy.not_equal(x1, x2, out=x1) >>> print(y) ivy.array([1, 0, 0, 1])
With a mix of
ivy.Arrayandivy.NativeArrayinputs:>>> x1 = ivy.native_array([1, 2]) >>> x2 = ivy.array([1, 2]) >>> y = ivy.not_equal(x1, x2) >>> print(y) ivy.array([False, False])
>>> x1 = ivy.native_array([1, -1]) >>> x2 = ivy.array([0, 1]) >>> y = ivy.not_equal(x1, x2) >>> print(y) ivy.array([True, True])
>>> x1 = ivy.native_array([1, -1, 1, -1]) >>> x2 = ivy.native_array([0, -1, 1, 0]) >>> y = ivy.zeros(4) >>> ivy.not_equal(x1, x2, out=y) >>> print(y) ivy.array([1., 0., 0., 1.])
>>> x1 = ivy.native_array([1, 2, 3, 4]) >>> x2 = ivy.native_array([0, 2, 3, 4]) >>> y = ivy.zeros(4) >>> ivy.not_equal(x1, x2, out=y) >>> print(y) ivy.array([1., 0., 0., 0.])
With
ivy.Containerinput:>>> x1 = ivy.Container(a=ivy.array([1, 0, 3]), ... b=ivy.array([1, 2, 3]), ... c=ivy.native_array([1, 2, 4])) >>> x2 = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.array([1, 2, 3]), ... c=ivy.native_array([1, 2, 4])) >>> y = ivy.not_equal(x1, x2) >>> print(y) { a: ivy.array([False, True, False]), b: ivy.array([False, False, False]), c: ivy.array([False, False, False]) }
>>> x1 = ivy.Container(a=ivy.native_array([0, 1, 0]), ... b=ivy.array([1, 2, 3]), ... c=ivy.native_array([1.0, 2.0, 4.0])) >>> x2 = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.native_array([1.1, 2.1, 3.1]), ... c=ivy.native_array([1, 2, 4])) >>> y = ivy.not_equal(x1, x2) >>> print(y) { a: ivy.array([True, True, True]), b: ivy.array([True, True, True]), c: ivy.array([False, False, False]) }
With a mix of
ivy.Arrayandivy.Containerinputs:>>> x1 = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.array([1, 3, 5])) >>> x2 = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.array([1, 4, 5])) >>> y = ivy.not_equal(x1, x2) >>> print(y) { a: ivy.array([False, False, False]), b: ivy.array([False, True, False]) }
>>> x1 = ivy.Container(a=ivy.array([1.0, 2.0, 3.0]), ... b=ivy.array([1, 4, 5])) >>> x2 = ivy.Container(a=ivy.array([1, 2, 3.0]), ... b=ivy.array([1.0, 4.0, 5.0])) >>> y = ivy.not_equal(x1, x2) >>> print(y) { a: ivy.array([False, False, False]), b: ivy.array([False, False, False]) }
- Array.not_equal(self, x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.not_equal. This method simply wraps the function, and so the docstring for ivy.not_equal also applies to this method with minimal changes.
- Parameters:
self (
Array) – first input array. May have any data type.x2 (
Union[float,Array,NativeArray]) – second input array. Must be compatible withself(see broadcasting).out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool.
Examples
With
ivy.Arrayinputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([1., 7., 9.]) >>> y = x1.not_equal(x2) >>> print(y) ivy.array([True, False, False])
With mixed
ivy.Arrayandivy.NativeArrayinputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = ivy.native_array([2.5, 2.9, 9.375]) >>> y = x1.not_equal(x2) >>> print(y) ivy.array([False, True, False])
With mixed
ivy.Arrayand float inputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = 7.3 >>> y = x1.not_equal(x2) >>> print(y) ivy.array([True, False, True])
With mixed
ivy.Containerandivy.Arrayinputs:>>> x1 = ivy.array([3., 1., 0.9]) >>> x2 = ivy.Container(a=ivy.array([12., 3.5, 6.3]), b=ivy.array([3., 1., 0.9])) >>> y = x1.not_equal(x2) >>> print(y) { a: ivy.array([True, True, True]), b: ivy.array([False, False, False]) }
- Container.not_equal(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.not_equal. This method simply wraps the function, and so the docstring for ivy.not_equal also applies to this method with minimal changes.
- Parameters:
self (
Container) – input array or container. May have any data type.x2 (
Union[Container,Array,NativeArray]) – input array or container. Must be compatible withself(see broadcasting). May have any data type.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container containing the element-wise results. The returned container must have a data type of
bool.
Examples
With
ivy.Containerinputs:>>> x1 = ivy.Container(a=ivy.array([12, 3.5, 6.3]), b=ivy.array([3., 1., 0.9])) >>> x2 = ivy.Container(a=ivy.array([12, 2.3, 3]), b=ivy.array([2.4, 3., 2.])) >>> y = x1.not_equal(x2) >>> print(y) { a: ivy.array([False, True, True]), b: ivy.array([True, True, True]) }
With mixed
ivy.Containerandivy.Arrayinputs:>>> x1 = ivy.Container(a=ivy.array([12., 3.5, 6.3]), b=ivy.array([3., 1., 0.9])) >>> x2 = ivy.array([3., 1., 0.9]) >>> y = x1.not_equal(x2) >>> print(y) { a: ivy.array([True, True, True]), b: ivy.array([False, False, False]) }