Ivy Frontend Tests#
Introduction#
Just like the backend functional API, our frontend functional API has a collection of Ivy tests located in the subfolder test ivy. In this section of the deep dive we are going to jump into Ivy Frontend Tests!
Writing Ivy Frontend Tests
The Ivy tests in this section make use of hypothesis for performing property based testing which is documented in detail in the Ivy Tests section of the Deep Dive. We assume knowledge of hypothesis data generation strategies and how to implement them for testing.
Ivy Decorators
Ivy provides test decorators for frontend tests to make them easier and more maintainable, currently there are two:
@handle_frontend_test()
a decorator which is used to test frontend functions, for examplenp.zeros()
andtensorflow.tan()
.@handle_frontend_method()
a decorator which is used to test frontend methods and special methods, for exampletorch.Tensor.add()
andnumpy.ndarray.__add__()
.
Important Helper Functions
helpers.test_frontend_function()
helper function that is designed to do the heavy lifting and make testing Ivy Frontends easy! One of the many Function Testing Helpers. It is used to test a frontend function for the current backend by comparing the result with the function in the associated framework.helpers.get_dtypes()
helper function that returns either a full list of data types or a single data type, we should always be using helpers.get_dtypes to sample data types.helpers.dtype_and_values()
is a convenience function that allows you to generate arrays of any dimension and their associated data types, returned as([dtypes], [np.array])
.helpers.get_shape()
is a convenience function that allows you to generate an array shape of typetuple
np_frontend_helpers.where()
a generation strategy to generate values for NumPy’s optionalwhere
argument.np_frontend_helpers.test_frontend_function()
behaves identical tohelpers.test_frontend_function()
but handles NumPy’s optionalwhere
argument
Useful Notes
We should always ensure that our data type generation is complete. Generating float data types only for a function that accepts all numeric data types is not complete, a complete set would include all numeric data types.
The
test_frontend_function()
argumentfn_tree
refers to the frontend function’s reference in its native namespace not just the function name. For examplelax.tan()
is needed for some functions in Jax,nn.functional.relu()
is needed for some functions in PyTorch etc.
To get a better understanding for writing frontend tests lets run through some examples!
Frontend Test Examples#
Before you begin writing a frontend test, make sure you are placing it in the correct location. See the /overview/contributing/open_tasks:Where to place a frontend function sub-section of the frontend APIs open task for more details.
ivy.tan()#
Jax
# ivy_tests/test_ivy/test_frontends/test_jax/test_lax/test_operators.py
@handle_frontend_test(
fn_tree="jax.lax.tan",
dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")),
test_with_out=st.just(False),
)
def test_jax_tan(
*,
dtype_and_x,
on_device,
fn_tree,
backend_fw,
frontend,
test_flags,
):
input_dtype, x = dtype_and_x
helpers.test_frontend_function(
input_dtypes=input_dtype,
backend_to_test=backend_fw,
frontend=frontend,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
x=x[0],
)
As you can see we generate almost everything we need to test a frontend function within the
@handle_frontend_test
decorator.We set
fn_tree
tojax.lax.tan
which is the path to the function in the Jax namespace.We use
helpers.get_dtypes("float")
to generateavailable_dtypes
, these are validfloat
data types specifically for Jax.We do not generate any values for
as_variable
,native_array
,frontend
,num_positional_args
,on_device
, these values are generated byhandle_frontend_test()
.We unpack the
dtype_and_x
toinput_dtype
andx
.We then pass the generated values to
helpers.test_frontend_function
which tests the frontend function.jax.lax.tan()
does not supportout
arguments so we setwith_out
toFalse
.One last important note is that all helper functions are designed to take keyword arguments only.
NumPy
# ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_trigonometric_functions.py
@handle_frontend_test(
fn_tree="numpy.tan",
dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype(
arr_func=[
lambda: helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
)
],
),
where=np_frontend_helpers.where(),
number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc(
fn_name="tan"
),
)
def test_numpy_tan(
dtypes_values_casting,
where,
frontend,
backend_fw,
test_flags,
fn_tree,
on_device,
):
input_dtypes, x, casting, dtype = dtypes_values_casting
where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools(
where=where,
input_dtype=input_dtypes,
test_flags=test_flags,
)
np_frontend_helpers.test_frontend_function(
input_dtypes=input_dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
rtol=1e-02,
atol=1e-02,
x=x[0],
out=None,
where=where,
casting=casting,
order="K",
dtype=dtype,
subok=True,
)
We set
fn_tree
tonumpy.tan
which is the path to the function in the NumPy namespace.Here we use
helpers.get_dtypes("numeric")
to generateavailable_dtypes
, these are validnumeric
data types specifically for NumPy.NumPy has an optional argument
where
which is generated usingnp_frontend_helpers.where()
.Using
np_frontend_helpers.handle_where_and_array_bools()
we do some processing on the generatedwhere
value.Instead of
helpers.test_frontend_function()
we usenp_frontend_helpers.test_frontend_function()
which behaves the same but has some extra code to handle thewhere
argument.casting
,order
,subok
and other are optional arguments fornumpy.tan()
.
TensorFlow
# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_math.py
@handle_frontend_test(
fn_tree="tensorflow.math.tan",
dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")),
test_with_out=st.just(False),
)
def test_tensorflow_tan(
*,
dtype_and_x,
frontend,
backend_fw,
test_flags,
fn_tree,
on_device,
):
input_dtype, x = dtype_and_x
helpers.test_frontend_function(
input_dtypes=input_dtype,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
x=x[0],
)
We set
fn_tree
totensorflow.math.tan
which is the path to the function in the TensorFlow namespace.We use
helpers.get_dtypes("float")
to generateavailable_dtypes
, these are valid float data types specifically for the function.
PyTorch
# ivy_tests/test_ivy/test_frontends/test_torch/test_pointwise_ops.py
@handle_frontend_test(
fn_tree="torch.tan",
dtype_and_x=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
),
)
def test_torch_tan(
*,
dtype_and_x,
on_device,
fn_tree,
frontend,
backend_fw,
test_flags,
):
input_dtype, x = dtype_and_x
helpers.test_frontend_function(
input_dtypes=input_dtype,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
input=x[0],
)
We use
helpers.get_dtypes("float")
to generateavailable_dtypes
, these are valid float data types specifically for the function.
ivy.full()#
Here we are going to look at an example of a function that does not consume an array
.
This is the creation function full()
, which takes an array shape as an argument to create an array filled with elements of a given value.
This function requires us to create extra functions for generating shape
and fill value
, these use the shared
hypothesis strategy.
Jax
# ivy_tests/test_ivy/test_frontends/test_jax/test_lax/test_operators.py
@st.composite
def _fill_value(draw):
dtype = draw(helpers.get_dtypes("numeric", full=False, key="dtype"))[0]
with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
if ivy_backend.is_uint_dtype(dtype):
return draw(helpers.ints(min_value=0, max_value=5))
elif ivy_backend.is_int_dtype(dtype):
return draw(helpers.ints(min_value=-5, max_value=5))
return draw(helpers.floats(min_value=-5, max_value=5))
@handle_frontend_test(
fn_tree="jax.lax.full",
shape=helpers.get_shape(
allow_none=False,
min_num_dims=1,
max_num_dims=5,
min_dim_size=1,
max_dim_size=10,
),
fill_value=_fill_value(),
dtypes=helpers.get_dtypes("numeric", full=False, key="dtype"),
)
def test_jax_full(
*,
shape,
fill_value,
dtypes,
on_device,
fn_tree,
frontend,
backend_fw,
test_flags,
):
helpers.test_frontend_function(
input_dtypes=dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
shape=shape,
fill_value=fill_value,
dtype=dtypes[0],
)
The custom function we use is
_fill_value
which generates afill_value
to use for thefill_value
argument but handles the complications ofint
anduint
types correctly.We use the helper function
helpers.get_shape()
to generateshape
.We use
helpers.get_dtypes
to generatedtype
, these are valid numeric data types specifically for Jax. This is used to specify the data type of the output array.full()
does not consumearray
.
NumPy
# ivy_tests/test_ivy/test_frontends/test_numpy/creation_routines/test_from_shape_or_value.py
@st.composite
def _input_fill_and_dtype(draw):
dtype = draw(helpers.get_dtypes("float", full=False))
dtype_and_input = draw(helpers.dtype_and_values(dtype=dtype))
with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
if ivy_backend.is_uint_dtype(dtype[0]):
fill_values = draw(st.integers(min_value=0, max_value=5))
elif ivy_backend.is_int_dtype(dtype[0]):
fill_values = draw(st.integers(min_value=-5, max_value=5))
else:
fill_values = draw(
helpers.floats(
min_value=-5,
max_value=5,
large_abs_safety_factor=10,
small_abs_safety_factor=10,
safety_factor_scale="log",
)
)
dtype_to_cast = draw(helpers.get_dtypes("float", full=False))
return dtype, dtype_and_input[1], fill_values, dtype_to_cast[0]
# full
@handle_frontend_test(
fn_tree="numpy.full",
shape=helpers.get_shape(
allow_none=False,
min_num_dims=1,
max_num_dims=5,
min_dim_size=1,
max_dim_size=10,
),
input_fill_dtype=_input_fill_and_dtype(),
test_with_out=st.just(False),
)
def test_numpy_full(
shape,
input_fill_dtype,
frontend,
backend_fw,
test_flags,
fn_tree,
on_device,
):
input_dtype, x, fill, dtype_to_cast = input_fill_dtype
helpers.test_frontend_function(
input_dtypes=input_dtype,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
shape=shape,
fill_value=fill,
dtype=dtype_to_cast,
)
We use
helpers.get_dtypes()
to generatedtype
, these are valid numeric data types specifically for NumPy.numpy.full()
does not have awhere
argument so we can usehelpers.test_frontend_function()
, we specify the out flag explicitly.
TensorFlow
# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_raw_ops.py
@st.composite
def _fill_value(draw):
dtype = draw(_dtypes())[0]
with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
if ivy_backend.is_uint_dtype(dtype):
return draw(helpers.ints(min_value=0, max_value=5))
elif ivy_backend.is_int_dtype(dtype):
return draw(helpers.ints(min_value=-5, max_value=5))
return draw(helpers.floats(min_value=-5, max_value=5))
# fill
@handle_frontend_test(
fn_tree="tensorflow.raw_ops.Fill",
shape=helpers.get_shape(
allow_none=False,
min_num_dims=1,
min_dim_size=1,
),
fill_value=_fill_value(),
dtypes=_dtypes(),
test_with_out=st.just(False),
)
def test_tensorflow_Fill( # NOQA
*,
shape,
fill_value,
dtypes,
frontend,
backend_fw,
test_flags,
fn_tree,
on_device,
):
helpers.test_frontend_function(
input_dtypes=dtypes,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
rtol=1e-05,
dims=shape,
value=fill_value,
)
We use
helpers.get_dtypes()
to generatedtype
, these are valid numeric data types specifically for this function.Tensorflow’s version of
full()
is namedFill()
therefore we specify thefn_tree
argument to be"Fill"
When running the test there were some small discrepancies between the values so we can use
rtol
to specify the relative tolerance. We specify the out flag explicitly.
PyTorch
# ivy_tests/test_ivy/test_frontends/test_torch/test_creation_ops.py
@st.composite
def _fill_value(draw):
with_array = draw(st.sampled_from([True, False]))
dtype = draw(st.shared(helpers.get_dtypes("numeric", full=False), key="dtype"))[0]
with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
if ivy_backend.is_uint_dtype(dtype):
ret = draw(helpers.ints(min_value=0, max_value=5))
elif ivy_backend.is_int_dtype(dtype):
ret = draw(helpers.ints(min_value=-5, max_value=5))
else:
ret = draw(helpers.floats(min_value=-5, max_value=5))
if with_array:
return np.array(ret, dtype=dtype)
else:
return ret
@handle_frontend_test(
fn_tree="torch.full",
shape=helpers.get_shape(
allow_none=False,
min_num_dims=1,
max_num_dims=5,
min_dim_size=1,
max_dim_size=10,
),
fill_value=_fill_value(),
dtype=st.shared(helpers.get_dtypes("numeric", full=False), key="dtype"),
)
def test_torch_full(
*,
shape,
fill_value,
dtype,
on_device,
fn_tree,
frontend,
backend_fw,
test_flags,
):
helpers.test_frontend_function(
input_dtypes=dtype,
on_device=on_device,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
size=shape,
fill_value=fill_value,
dtype=dtype[0],
device=on_device,
)
We use
helpers.get_dtypes
to generatedtype
, these are valid numeric data types specifically for Torch.
Testing Without Using Tests Values#
While even using hypothesis, there are some cases in which we set test_values=False
for example, we have a
function add_noise() and we call it on x and we try to assert (we internally use assert np.all_close) that the result
from torch backend matches tensorflow and the test will always fail, because the function add_noise() depends on a random
seed internally that we have no control over, what we change is only how we test for equality, in which in that case
we can not and we have to reconstruct the output as shown in the example below.
# ivy_tests/test_ivy/test_frontends/test_torch/test_linalg.py
@handle_frontend_test(
fn_tree="torch.linalg.qr",
dtype_and_input=_get_dtype_and_matrix(batch=True),
)
def test_torch_qr(
*,
dtype_and_input,
frontend,
test_flags,
fn_tree,
backend_fw,
on_device,
):
input_dtype, x = dtype_and_input
ret, frontend_ret = helpers.test_frontend_function(
input_dtypes=input_dtype,
backend_to_test=backend_fw,
frontend=frontend,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
A=x[0],
test_values=False,
)
with update_backend(backend_fw) as ivy_backend:
ret = [ivy_backend.to_numpy(x) for x in ret]
frontend_ret = [np.asarray(x) for x in frontend_ret]
q, r = ret
frontend_q, frontend_r = frontend_ret
assert_all_close(
ret_np=q @ r,
ret_from_gt_np=frontend_q @ frontend_r,
rtol=1e-2,
atol=1e-2,
backend=backend_fw,
ground_truth_backend=frontend,
)
The parameter
test_values=False
is explicitly set to “False” as there can be multiple solutions for this and those multiple solutions can all be correct, so we have to test by reconstructing the output.
What assert_all_close() actually does is, it checks for values and dtypes, if even one of them is not the same it will cause an assertion, the examples given below will make it clearer.
>>> a = np.array([[1., 5.]], dtype='float32')
>>> b = np.array([[2., 4.]], dtype='float32')
>>> print(helpers.assert_all_close(a, b))
AssertionError: [[1. 5.]] != [[2. 4.]]
>>> a = np.array([[1., 5.]], dtype='float64')
>>> b = np.array([[2., 4.]], dtype='float32')
>>> print(helpers.assert_all_close(a, b))
AssertionError: the return with a TensorFlow backend produced a data type of float32, while the return with a backend returned a data type of float64.
Alias functions#
Let’s take a quick walkthrough on testing the function alias as we know that such functions have the same behavior as original functions.
For example torch_frontend.greater()
has an alias function torch_frontend.gt()
which we need to make sure that it is working the same as the targeted framework function torch.greater()
and torch.gt()
.
Code example for alias function:
# in ivy/functional/frontends/torch/comparison_ops.py
@to_ivy_arrays_and_back
def greater(input, other, *, out=None):
input, other = torch_frontend.promote_types_of_torch_inputs(input, other)
return ivy.greater(input, other, out=out
gt = greater
As you can see the
torch_frontend.gt()
is an alias totorch_frontend.greater()
and below is how we update the unit test oftorch_frontend.greater()
to test the alias function as well.
PyTorch
# ivy_tests/test_ivy/test_frontends/test_torch/test_comparison_ops.py
@handle_frontend_test(
fn_tree="torch.gt",
aliases=["torch.greater"],
dtype_and_inputs=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
num_arrays=2,
allow_inf=False,
shared_dtype=True,
),
)
def test_torch_greater(
*,
dtype_and_inputs,
on_device,
fn_tree,
frontend,
backend_fw,
test_flags,
):
input_dtype, inputs = dtype_and_inputs
helpers.test_frontend_function(
input_dtypes=input_dtype,
frontend=frontend,
backend_to_test=backend_fw,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
input=inputs[0],
other=inputs[1],
)
We added a list of all aliases to the
greater
function with a full namespace path such that when we are testing the original function we will test for the alias as well.During the frontend implementation, if a new alias is introduced you only need to go to the test function of the original frontend function and add that alias to
all_aliases
argument in thetest_frontend_function()
helper with its full namespace.
Frontend Instance Method Tests#
The frontend instance method tests are similar to the frontend function test, but instead of testing the function directly we test the instance method of the frontend class.
major difference is that we have more flags to pass now, most initialization functions take an array as an input. also some methods may take an array as input,
for example, ndarray.__add__
would expect an array as input, despite the self.array
. and to make our test complete we need to generate separate flags for each.
Important Helper Functions
@handle_frontend_method()
requires 3 keyword only parameters:class_tree
A full path to the array class in Ivy namespace.init_tree
A full path to initialization function.method_name
The name of the method to test.
helpers.test_frontend_method()
is used to test frontend instance methods. It is used in the same way ashelpers.test_frontend_function()
. A few important arguments for this function are following:init_input_dtypes
Input dtypes of the arguments on which we are initializing the array on.init_all_as_kwargs_np
The data to be passed when initializing, this will be a dictionary in which the numpy array which will contain the data will be passed in thedata
key.method_input_dtypes
The input dtypes of the argument which are to be passed to the instance method after the initialization of the array.method_all_as_kwargs_np
All the arguments which are to be passed to the instance method.
Frontend Instance Method Test Examples#
ivy.add()#
NumPy
# ivy_tests/test_ivy/test_frontends/test_numpy/test_ndarray.py
@handle_frontend_method(
class_tree=CLASS_TREE,
init_tree="numpy.array",
method_name="__add__",
dtype_and_x=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2
),
)
def test_numpy_instance_add__(
dtype_and_x,
frontend_method_data,
init_flags,
method_flags,
frontend,
backend_fw,
):
input_dtypes, xs = dtype_and_x
helpers.test_frontend_method(
init_input_dtypes=input_dtypes,
init_all_as_kwargs_np={
"object": xs[0],
},
method_input_dtypes=input_dtypes,
method_all_as_kwargs_np={
"value": xs[1],
},
frontend=frontend,
backend_to_test=backend_fw,
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
)
We specify the
class_tree
to beivy.functional.frontends.numpy.array()
which is the path to the class in ivy namespace.We specify the function that is used to initialize the array, for jax, we use
numpy.array
to create anumpy.ndarray
.We specify the
method_name
to be__add__()
which is the path to the method in the frontend class.
TensorFlow
# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_tensor.py
@handle_frontend_method(
class_tree=CLASS_TREE,
init_tree="tensorflow.constant",
method_name="__add__",
dtype_and_x=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("numeric"),
num_arrays=2,
shared_dtype=True,
),
)
def test_tensorflow_instance_add(
dtype_and_x,
frontend,
backend_fw,
frontend_method_data,
init_flags,
method_flags,
):
input_dtype, x = dtype_and_x
helpers.test_frontend_method(
init_input_dtypes=input_dtype,
init_all_as_kwargs_np={
"value": x[0],
},
method_input_dtypes=input_dtype,
method_all_as_kwargs_np={
"y": x[1],
},
frontend=frontend,
backend_to_test=backend_fw,
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
)
We specify the function that is used to initialize the array, for TensorFlow, we use
tensorflow.constant
to create atensorflow.EagerTensor
.We specify the
method_tree
to betensorflow.EagerTensor.__add__()
which is the path to the method in the frontend class.
PyTorch
# ivy_tests/test_ivy/test_frontends/test_torch/test_tensor.py
@handle_frontend_method(
class_tree=CLASS_TREE,
init_tree="torch.tensor",
method_name="add",
dtype_and_x=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
num_arrays=2,
min_value=-1e04,
max_value=1e04,
allow_inf=False,
),
alpha=st.floats(min_value=-1e04, max_value=1e04, allow_infinity=False),
)
def test_torch_instance_add(
dtype_and_x,
alpha,
frontend,
backend_fw,
frontend_method_data,
init_flags,
method_flags,
):
input_dtype, x = dtype_and_x
helpers.test_frontend_method(
init_input_dtypes=input_dtype,
init_all_as_kwargs_np={
"data": x[0],
},
method_input_dtypes=input_dtype,
method_all_as_kwargs_np={
"other": x[1],
"alpha": alpha,
},
frontend_method_data=frontend_method_data,
init_flags=init_flags,
method_flags=method_flags,
frontend=frontend,
backend_to_test=backend_fw,
atol_=1e-02,
)
We specify the function that is used to initialize the array, for PyTorch, we use
torch.tensor
to create atorch.Tensor
.We specify the
method_tree
to betorch.Tensor.__add__()
which is the path to the method in the frontend class.
Hypothesis Helpers#
Naturally, many of the functions in the various frontend APIs are very similar to many of the functions in the Ivy API.
Therefore, the unit tests will follow very similar structures with regards to the data generated for testing.
There are many data generation helper functions defined in the Ivy API test files, such as _arrays_idx_n_dtypes()
defined in ivy/ivy_tests/test_ivy/test_functional/test_core/test_manipulation.py
.
This helper generates: a set of concatenation-compatible arrays, the index for the concatenation, and the data types of each array.
Not surprisingly, this helper is used for testing ivy.concat()
, as shown here.
Clearly, this helper would also be very useful for testing the various frontend concatenation functions, such as jax.numpy.concatenate
, numpy.concatenate
, tensorflow.concat
and torch.cat
.
We could simply copy and paste the implementation from /ivy_tests/test_ivy/test_functional/test_core/test_manipulation.py
into each file /ivy_tests/test_ivy/test_frontends/test_<framework>/test_<group>.py
, but this would result in needless duplication.
Instead, we should simply import the helper function from the ivy test file into the frontend test file, like so from ivy_tests.test_ivy.test_frontends.test_manipulation import _arrays_idx_n_dtypes
.
In cases where a helper function is uniquely useful for a frontend function without being useful for an Ivy function, then it should be implemented directly in /ivy_tests/test_ivy/test_frontends/test_<framework>/test_<group>.py
rather than in /ivy_tests/test_ivy/test_functional/test_core/test_<closest_relevant_group>.py
.
However, as shown above, in many cases the same helper function can be shared between the Ivy API tests and the frontend tests, and we should strive for as much sharing as possible to minimize the amount of code.
Running Ivy Frontend Tests
The CI Pipeline runs the entire collection of Frontend Tests for the frontend that is being updated on every push to the repo.
You will need to make sure the Frontend Test is passing for each Ivy Frontend function you introduce/modify. If a test fails on the CI, you can see details about the failure under Details -> Run Frontend Tests as shown in CI Pipeline.
You can also run the tests locally before making a PR. See the relevant Setting Up Testing in PyCharm section for instructions on how to do so.
Frontend Framework Testing Configuration#
To effectively test a frontend within our pipeline, it is essential to provide specific information about the framework we’re trying to test. This information includes how to create an array, return type checking, supported devices, and data types, etc.
All the required information for a frontend is stored in a configuration file, which serves as a reference for our testing pipeline.
The process of incorporating a new frontend into our testing procedure involves simply writing a new config file for that framework.
The configuration files are located at: ivy_tests/test_ivy/test_frontends/config/
Round Up
This should have hopefully given you a good understanding of Ivy Frontend Tests!
If you have any questions, please feel free to reach out on discord in the ivy frontends tests thread!
Video