conv3d_transpose#
- ivy.conv3d_transpose(x, filters, strides, padding, /, *, output_shape=None, filter_format='channel_last', data_format='NDHWC', dilations=1, bias=None, out=None)[source]#
Compute a 3-D transpose convolution given 5-D input x and filters arrays.
- Parameters:
x (
Union[Array,NativeArray]) – Input volume [batch_size,d,h,w,d_in] or [batch_size,d_in,d,h,w].filters (
Union[Array,NativeArray]) – Convolution filters [fd,fh,fw,d_out,d_in].strides (
Union[int,Tuple[int,int,int]]) – The stride of the sliding window for each dimension of input.padding (
str) – Either ‘SAME’ (padding so that the output’s shape is the same as the input’s), or ‘VALID’ (padding so that the output’s shape is output_shape).output_shape (
Optional[Union[Shape,NativeShape]], default:None) – Shape of the output (Default value = None)filter_format (
str, default:'channel_last') – Either “channel_first” or “channel_last”. “channel_first” corresponds to “IODHW”,input data formats, while “channel_last” corresponds to “DHWOI”.data_format (
str, default:'NDHWC') – The ordering of the dimensions in the input, one of “NDHWC” or “NCDHW”. “NDHWC” corresponds to inputs with shape (batch_size, depth, height, width, channels), while “NCDHW” corresponds to input with shape (batch_size, channels, depth, height, width).dilations (
Union[int,Tuple[int,int,int]], default:1) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional[Array], default:None) – Bias array of shape [d_out]out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The result of the transpose convolution operation.
Examples
With
ivy.Arrayinput:>>> x = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3]) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], 'SAME') >>> print(y.shape) ivy.Shape(1, 6, 56, 56, 6)
>>> x = ivy.random_normal(mean=0, std=1, shape=[1, 3, 64, 64, 3]) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], 'VALID', dilations=[1, 1, 1]) >>> print(y.shape) ivy.Shape(1, 7, 129, 129, 6)
With
ivy.Containerinputs:>>> a = ivy.random_normal(mean=0, std=1, shape=[1, 3, 14, 14, 3]) >>> b = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3]) >>> c = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3, 3]) >>> d = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3, 3]) >>> x = ivy.Container(a=a, b=b) >>> filters = ivy.Container(c=c, d=d) >>> y = ivy.conv3d_transpose(x, filters, [2, 2, 2], 'SAME') >>> print(y.shape) { a: { c: ivy.Shape(1, 6, 28, 28, 3), d: ivy.Shape(1, 6, 28, 28, 3) }, b: { c: ivy.Shape(1, 6, 56, 56, 3), d: ivy.Shape(1, 6, 56, 56, 3) }, c: { c: ivy.Shape(6, 6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 6, 3) }, d: { c: ivy.Shape(6, 6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 6, 3) } }
With a mix of
ivy.Arrayandivy.Containerinputs:>>> x = ivy.full((1, 6, 6, 6, 1), 2.7) >>> a = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1]) >>> b = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1]) >>> filters = ivy.Container(a=a, b=b) >>> y = ivy.conv3d_transpose(x, filters, [1, 1, 1], 'VALID', dilations=[1, 1, 1]) >>> print(y.shape) { a: ivy.Shape(1, 8, 8, 8, 1), b: ivy.Shape(1, 8, 8, 8, 1) }
>>> x = ivy.full((1, 6, 6, 6, 1), 1.23) >>> a = ivy.array(ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1])) >>> b = ivy.array(ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 1, 1])) >>> filters = ivy.Container(a=a, b=b) >>> y = ivy.conv3d_transpose(x, filters, [1, 1, 1], 'VALID', dilations=[1, 1, 1]) >>> print(y.shape) { a: ivy.Shape(1, 8, 8, 8, 1), b: ivy.Shape(1, 8, 8, 8, 1) }
- Array.conv3d_transpose(self, filters, strides, padding, /, *, output_shape=None, filter_format='channel_last', data_format='NDHWC', dilations=1, bias=None, out=None)[source]#
ivy.Array instance method variant of ivy.conv3d_transpose. This method simply wraps the function, and so the docstring for ivy.conv3d_transpose also applies to this method with minimal changes.
- Parameters:
self (
Array) – Input volume [batch_size,d,h,w,d_in] or [batch_size,d_in,d,h,w].filters (
Union[Array,NativeArray]) – Convolution filters [fd,fh,fw,d_out,d_in].strides (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int]]) – The stride of the sliding window for each dimension of input.padding (
Union[str,List[int]]) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.output_shape (
Optional[Union[Shape,NativeShape]], default:None) – Shape of the output (Default value = None)filter_format (
str, default:'channel_last') – Either “channel_first” or “channel_last”. “channel_first” corresponds to “IODHW”,input data formats, while “channel_last” corresponds to “DHWOI”.data_format (
str, default:'NDHWC') –The ordering of the dimensions in the input, one of “NDHWC” or “NCDHW”. “NDHWC” corresponds to inputs with shape (batch_size,
depth, height, width, channels), while “NCDHW” corresponds to input with shape (batch_size, channels, depth, height, width).
dilations (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int]], default:1) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional[Array], default:None) – Bias array of shape [d_out].out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – The result of the transpose convolution operation.
Examples
>>> x = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3]) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> y = x.conv3d_transpose(filters, 2, 'SAME') >>> print(y.shape) (1, 6, 56, 56, 6)
- Container.conv3d_transpose(self, filters, strides, padding, /, *, output_shape=None, filter_format='channel_last', data_format='NDHWC', dilations=1, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, bias=None, out=None)[source]#
ivy.Container instance method variant of ivy.conv3d_transpose. This method simply wraps the function, and so the docstring for ivy.conv3d_transpose also applies to this method with minimal changes.
- Parameters:
self (
Container) – Input container with leaves of volume [batch_size,d,h,w,d_in] or [batch_size,d_in,d,h,w].filters (
Union[Array,NativeArray,Container]) – Convolution filters [fd,fh,fw,d_out,d_in].strides (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int],Container]) – The stride of the sliding window for each dimension of input.padding (
Union[str,List[int],Container]) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.output_shape (
Optional[Union[Array,NativeArray,Container]], default:None) – Shape of the output (Default value = None)filter_format (
str, default:'channel_last') – Either “channel_first” or “channel_last”. “channel_first” corresponds to “IODHW”,input data formats, while “channel_last” corresponds to “DHWOI”.data_format (
str, default:'NDHWC') –The ordering of the dimensions in the input, one of “NDHWC” or “NCDHW”. “NDHWC” corresponds to inputs with shape (batch_size,
depth, height, width, channels), while “NCDHW” corresponds to input with shape (batch_size, channels, depth, height, width).
dilations (
Union[int,Tuple[int],Tuple[int,int],Tuple[int,int,int]], default:1) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional[Container], default:None) – Bias array of shape [d_out].out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – The result of the transpose convolution operation in a container.
Examples
>>> x = ivy.Container(a = ivy.ones((1, 3, 3, 3, 1)).astype(ivy.float32) ) >>> filters = ivy.ones((3, 3, 3, 1, 1)).astype(ivy.float32) >>> result = x.conv3d(filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[8.], [8.]], [[8.], [8.]]], [[[8.], [8.]], [[8.], [8.]]]]]) }