sqrt#
- ivy.sqrt(x, /, *, out=None)[source]#
Calculate the square root, having domain
[0, +infinity]and codomain[0, +infinity], for each elementx_iof the input arrayx. After rounding, each result must be indistinguishable from the infinitely precise result (as required by IEEE 754).Note
After rounding, each result must be indistinguishable from the infinitely precise result (as required by IEEE 754).
Note
For complex floating-point operands,
sqrt(conj(x))must equalconj(sqrt(x)).Note
By convention, the branch cut of the square root is the negative real axis \((-\infty, 0)\).
The square root is a continuous function from above the branch cut, taking into account the sign of the imaginary component.
Accordingly, for complex arguments, the function returns the square root in the range of the right half-plane, including the imaginary axis (i.e., the plane defined by \([0, +\infty)\) along the real axis and \((-\infty, +\infty)\) along the imaginary axis).
Special cases
For floating-point operands,
If
x_iisNaN, the result isNaN.If
x_iis less than0, the result isNaN.If
x_iis+0, the result is+0.If
x_iis-0, the result is-0.If
x_iis+infinity, the result is+infinity.
For complex floating-point operands, let
a = real(x_i),b = imag(x_i), andIf
ais either+0or-0andbis+0, the result is+0 + 0j.If
ais any value (includingNaN) andbis+infinity, the result is+infinity + infinity j.If
ais a finite number andbisNaN, the result isNaN + NaN j.If
a-infinityandbis a positive (i.e., greater than0) finite number, the result isNaN + NaN j.If
ais+infinityandbis a positive (i.e., greater than0) finite number, the result is+0 + infinity j.If
ais-infinityandbisNaN, the result isNaN + infinity j(sign of the imaginary component is unspecified).If
ais+infinityandbisNaN, the result is+infinity + NaN j.If
aisNaNandbis any value, the result isNaN + NaN j.If
aisNaNandbisNaN, the result isNaN + NaN j.
- Parameters:
- Return type:
- Returns:
ret – an array containing the square root of each element in
x. The returned array must have a floating-point data type determined by type-promotion.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Containerinstances in place of any of the argumentsExamples
With
ivy.Arrayinput:>>> x = ivy.array([0, 4., 8.]) >>> y = ivy.sqrt(x) >>> print(y) ivy.array([0., 2., 2.83])
>>> x = ivy.array([1, 2., 4.]) >>> y = ivy.zeros(3) >>> ivy.sqrt(x, out=y) ivy.array([1., 1.41, 2.])
>>> X = ivy.array([40., 24., 100.]) >>> ivy.sqrt(x, out=x) >>> ivy.array([6.32455532, 4.89897949, 10.])
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([44., 56., 169.]), b=ivy.array([[49.,1.], [0,20.]])) # noqa >>> y = ivy.sqrt(x) >>> print(y) { a: ivy.array([6.63, 7.48, 13.]), b: ivy.array([[7., 1.], [0., 4.47]]) }
- Array.sqrt(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.sqrt. This method simply wraps the function, and so the docstring for ivy.sqrt also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array. Should have a real-valued floating-point data type.out (
Optional[Array], default:None) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – an array containing the square root of each element in
self. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Arrayinstance method:>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = x.sqrt() >>> print(y) ivy.array([[1. , 1.41], [1.73, 2. ]])
- Container.sqrt(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.sqrt. This method simply wraps the function, and so the docstring for ivy.sqrt also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container. Should have a real-valued floating-point data type.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – a container containing the square root of each element in
self. The returned container must have a real-valued floating-point data type determined by type-promotion.
Examples
with
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([0., 100., 27.]), ... b=ivy.native_array([93., 54., 25.])) >>> y = x.sqrt() >>> print(y) { a: ivy.array([0., 10., 5.2]), b: ivy.array([9.64, 7.35, 5.]) }