binary_cross_entropy#
- ivy.binary_cross_entropy(true, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, out=None)[source]#
Compute the binary cross entropy loss.
- Parameters:
true (
Union[Array,NativeArray]) – input array containing true labels.pred (
Union[Array,NativeArray]) – input array containing Predicted labels.from_logits (
bool, default:False) – Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.epsilon (
float, default:0.0) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0, no smoothing will be applied. Default:0.reduction (
str, default:'mean') –'none': No reduction will be applied to the output.'mean': The output will be averaged.'sum': The output will be summed. Default:'none'.pos_weight (
Optional[Union[Array,NativeArray]], default:None) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional[int], default:None) – Axis along which to compute crossentropy.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The binary cross entropy between the given distributions.
Examples
With
ivy.Arrayinput:>>> x = ivy.array([0, 1, 0, 0]) >>> y = ivy.array([0.2, 0.8, 0.3, 0.8]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.60309976)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> z = ivy.binary_cross_entropy(x, y, reduction='mean') >>> print(z) ivy.array(7.6666193)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> pos_weight = ivy.array([1, 2, 3, 4]) >>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True) ivy.array(2.01348412)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> pos_weight = ivy.array([1, 2, 3, 4]) >>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1) >>> print(z) ivy.array([8.05393649])
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> z = ivy.binary_cross_entropy(x, y, reduction='none', epsilon=0.5) >>> print(z) ivy.array([[11.49992943, 3.83330965, 3.83330965, 11.49992943]])
>>> x = ivy.array([[0, 1, 0, 0]]) >>> y = ivy.array([[0.6, 0.2, 0.7, 0.3]]) >>> z = ivy.binary_cross_entropy(x, y, epsilon=1e-3) >>> print(z) ivy.array(1.02136981)
With
ivy.NativeArrayinput:>>> x = ivy.native_array([0, 1, 0, 1]) >>> y = ivy.native_array([0.2, 0.7, 0.2, 0.6]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.32844672)
With a mix of
ivy.Arrayandivy.NativeArrayinputs:>>> x = ivy.array([0, 0, 1, 1]) >>> y = ivy.native_array([0.1, 0.2, 0.8, 0.6]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.26561815)
With
ivy.Containerinput:>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1])) >>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2])) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) { a: ivy.array(0.36354783), b: ivy.array(1.14733934) }
With a mix of
ivy.Arrayandivy.Containerinputs:>>> x = ivy.array([1 , 1, 0]) >>> y = ivy.Container(a=ivy.array([0.7, 0.8, 0.2])) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) { a: ivy.array(0.26765382) }
Instance Method Examples
Using
ivy.Arrayinstance method:>>> x = ivy.array([1, 0, 0, 0]) >>> y = ivy.array([0.8, 0.2, 0.2, 0.2]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.22314337)
- Array.binary_cross_entropy(self, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, out=None)[source]#
ivy.Array instance method variant of ivy.binary_cross_entropy. This method simply wraps the function, and so the docstring for ivy.binary_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Array) – input array containing true labels.pred (
Union[Array,NativeArray]) – input array containing Predicted labels.from_logits (
bool, default:False) – Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.epsilon (
float, default:0.0) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0, no smoothing will be applied. Default:0.reduction (
str, default:'mean') –'none': No reduction will be applied to the output.'mean': The output will be averaged.'sum': The output will be summed. Default:'none'.pos_weight (
Optional[Union[Array,NativeArray]], default:None) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional[int], default:None) – Axis along which to compute crossentropy.out (
Optional[Array], default:None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array- Returns:
ret – The binary cross entropy between the given distributions.
Examples
>>> x = ivy.array([1 , 1, 0]) >>> y = ivy.array([0.7, 0.8, 0.2]) >>> z = x.binary_cross_entropy(y) >>> print(z) ivy.array(0.26765382)
- Container.binary_cross_entropy(self, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.binary_cross_entropy. This method simply wraps the function, and so the docstring for ivy.binary_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Container) – input container containing true labels.pred (
Union[Container,Array,NativeArray]) –input array or container containing Predicted labels. from_logits
Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.
epsilon (
Union[float,Container], default:0.0) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0, no smoothing will be applied. Default:0.reduction (
Union[str,Container], default:'mean') –'none': No reduction will be applied to the output.'mean': The output will be averaged.'sum': The output will be summed. Default:'none'.pos_weight (
Optional[Union[Array,NativeArray,Container]], default:None) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional[Union[int,Container]], default:None) – Axis along which to compute crossentropy.key_chains (
Optional[Union[List[str],Dict[str,str],Container]], default:None) – The key-chains to apply or not apply the method to. Default isNone.to_apply (
Union[bool,Container], default:True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue.prune_unapplied (
Union[bool,Container], default:False) – Whether to prune key_chains for which the function was not applied. Default isFalse.map_sequences (
Union[bool,Container], default:False) – Whether to also map method to sequences (lists, tuples). Default isFalse.out (
Optional[Container], default:None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container- Returns:
ret – The binary cross entropy between the given distributions.
Examples
>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1])) >>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2])) >>> z = x.binary_cross_entropy(y) >>> print(z) { a: ivy.array(0.36354783), b: ivy.array(1.14733934) }